Two stochastic optimization algorithms for convex optimization with fixed point constraints
نویسندگان
چکیده
منابع مشابه
Proximal point algorithms for nonsmooth convex optimization with fixed point constraints
The problem of minimizing the sum of nonsmooth, convex objective functions defined on a real Hilbert space over the intersection of fixed point sets of nonexpansive mappings, onto which the projections cannot be efficiently computed, is considered. The use of proximal point algorithms that use the proximity operators of the objective functions and incremental optimization techniques is proposed...
متن کاملOnline Convex Optimization with Stochastic Constraints
This paper considers online convex optimization (OCO) with stochastic constraints, which generalizes Zinkevich’s OCO over a known simple fixed set by introducing multiple stochastic functional constraints that are i.i.d. generated at each round and are disclosed to the decision maker only after the decision is made. This formulation arises naturally when decisions are restricted by stochastic e...
متن کاملAlgorithms for stochastic optimization with expectation constraints
This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with functional constraints given in the form of expectation. We present a new stochastic approximation (SA) type algorithm, namely the alternating mirror-descent SA (AMDSA) algorithm, to minimize these expectation constrained problems, and show that it exhibits the optimal rate of convergen...
متن کاملIncremental Stochastic Subgradient Algorithms for Convex Optimization
This paper studies the effect of stochastic errors on two constrained incremental subgradient algorithms. The incremental subgradient algorithms are viewed as decentralized network optimization algorithms as applied to minimize a sum of functions, when each component function is known only to a particular agent of a distributed network. First, the standard cyclic incremental subgradient algorit...
متن کاملStatistical Query Algorithms for Stochastic Convex Optimization
Stochastic convex optimization, where the objective is the expectation of a random convex function, is an important and widely used method with numerous applications in machine learning, statistics, operations research and other areas. We study the complexity of stochastic convex optimization given only statistical query (SQ) access to the objective function. We show that well-known and popular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optimization Methods and Software
سال: 2018
ISSN: 1055-6788,1029-4937
DOI: 10.1080/10556788.2018.1425860